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Genetic Linkage Analysis of a Dichotomous Trait Incorporating a Tightly
Linked Quantitative Trait in Affected Sib Pairs
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Many complex diseases are usually considered as dichotomous traits but are also associated with quantitative
biological markers or quantitative risk factors. For such dichotomous traits, although their associated quantitative
traits may not directly underly the diagnosis of the disease status, if the associated quantitative trait is also linked
to the chromosomal regions linked to the dichotomous trait, then joint analysis of dichotomous and quantitative
traits should be more efficient than consideration of them separately. Previous studies have focused on the situation
when a dichotomous trait can be modeled by a threshold process acting on a single underlying normal liability
distribution. However, for many complex disorders, including most psychiatric disorders, diagnosis is generally
based on a set of binary or discrete criteria. These traits cannot be modeled on the basis of a threshold process
acting on an underlying continuous trait. We propose a likelihood-based method that efficiently combines such a
discrete trait and an associated quantitative trait in the analysis, using affected-sib-pair data. Our simulation studies
suggest that joint analysis increases the power to detect linkage of dichotomous traits. We also apply the proposed
new method to an asthma genome-scan data set and incorporate the total serum immunoglobulin E level in the
analysis.

Introduction

Many complex diseases, such as asthma, autism, and
schizophrenia, are usually considered as dichotomous
traits but are also associated with quantitative biological
markers or quantitative risk factors. For example, asthma
is associated with total serum immunoglobulin E (IgE)
level: children with asthma tend to have elevated total
serum IgE levels. For such diseases, although the associ-
ated quantitative trait may not directly underlie the di-
agnostics of the disease status, if it is also linked to the
dichotomous trait loci or the chromosomal regions linked
to the trait loci, then joint consideration of the quanti-
tative trait in the analysis in general will increase our
ability to map the genes that predispose to complex
diseases.

There has been much work on the joint analysis of
(a) dichotomous traits that can be modeled by a thresh-
old process acting on an underlying normal liability
distribution and (b) associated quantitative traits (see,
e.g., Lalouel et al. 1985; Moldin et al. 1990; Ott 1995;
Almasy et al. 1997; Blangero et al. 1997; Williams et
al. 1999a, 1999b). The authors of these studies have
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shown that the power to detect chromosomal regions
influencing a disease trait can benefit considerably from
joint analysis of the discretized trait and a correlated
quantitative factor. For such joint analysis, the likeli-
hood of the data can be obtained by appropriately in-
tegrating a normal bivariate (or multivariate) trait like-
lihood, according to the threshold values that determine
the trait status. Therefore, the basic framework of this
approach is based on the premise that the dichotomous
trait is a discretized version of an underlying continuous
trait and that the rule of discretization is known.

However, for many complex disorders, including
most psychiatric disorders, diagnosis is generally based
on a set of binary or discrete criteria. The disease status
cannot be modeled on the basis of a threshold process
acting on an underlying continuous trait. Thus, the ex-
isting approaches cited above do not apply. We propose
a combined likelihood ratio (CLR) test using affected-
sib-pair (ASP) data for detecting linkage of the dichot-
omous trait incorporating an associated quantitative
trait. The proposed likelihood is efficiently constructed
from two components. The first component is for the
dichotomous trait (the affection status) and uses the
number of alleles that are shared identical by descent
(IBD), as in the maximum LOD score (MLS) statistic
(Risch 1990). The second component is for the quan-
titative trait and is based on the variance components
(VC) method (see, e.g., Goldgar 1990; Schork 1993;
Amos 1994).
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We conduct simulation studies to examine the finite
sample behavior of the proposed likelihood ratio (LR)
statistic, with respect to the type I error rate and power.
The simulation results show that the power of the pro-
posed LR test is more powerful than the test that does
not incorporate the associated quantitative trait. We
also analyze the asthma data set of Wjst et al. (1999)
to illustrate our proposed approach.

Methods

The Combined Likelihood

Let be the associated quantitative traity p (y ,y )i 1i 2i

values of the ith ASP. Let be them p (m , … ,m )i i1 ik

marker data of the ith ASP at k loci in the chromosomal
region under investigation. At each locus, the marker
genotype of the parents may or may not be available.

For the dichotomous trait, we do not assume any spe-
cific mode of inheritance. For the associated quantitative
trait, following Haseman and Elston (1972), we consider
the general model

y p m � g � e ,1i 1i 1i

y p m � g � e , (1)2i 2i 2i

where m is the overall mean; are the geneticg , j p 1,2ji

effects taking values a, d, and �a for genotypes DD,
Dd, and dd, respectively; and are the residuale , j p 1, 2ji

effects including polygenic and environmental effects.
Denote and .2j p Var (e ) j p Cov (e ,e )e ji e ,e 1i 2i1 2

We note that the loci affecting the dichotomous trait
and quantitative trait may not be the same. If they are
far apart, then incorporating a quantitative trait into the
analysis in general does not increase the power to detect
linkage of the dichotomous trait. Therefore, we consider
only the following scenarios: (a) pleiotropy, in which the
same locus affects both the dichotomous and quanti-
tative traits; and (b) tight coincident linkage (Almasy et
al. 1997), in which the genes that affect the dichotomous
trait and quantitative trait are different but are tightly
linked and we assume that the recombination fraction
between them is zero.

Consider a chromosomal region containing, at most,
one gene that predisposes to the dichotomous trait. Let
t be the location (in cM) from the left end of the chro-
mosome. The likelihood at locus t is the conditional
probability of the observed quantitative trait values and
the marker, given that the sib pair is affected—that is,

. We use this conditional likelihoodL (t) p p(y ,mFasp ,t)i i i i

because the data are ascertained on the basis of the cri-
terion that the sibs are affected. In the absence of the
quantitative trait, this form of the likelihood is also used

in the MLS statistic for ASP data by Risch (1990) and
by Whittemore (1996), for general pedigree data.

Let si(t) be the number of alleles shared IBD of the ith
pair at locus t. By the assumption of pleiotropy or tight
coincident linkage and by means of standard decom-
position of probability, the likelihood can be written as

2

[ ]L (z,r; t) p p yFs (t) p j,asp�i i i i
jp0

[ ] [ ]#P mFs (t) p j P s (t) p jFasp ,i i i i

where the parameters of interest z and r are included in
the argument of Li. The overall likelihood L is simply
the product of the Li values over all the sib pairs.

The likelihood Li consists of three components. The
first component is the conditional distribution of the
quantitative trait values of ASP given the IBD sharing
si(t). On the basis of the model, we have (Haseman and
Elston 1972; Amos 1994)

2 2 2Var (y Fasp ) p Var (y Fasp ) p j � j � j1i i 2i i a d e

and

[ ]Cov y ,y Fs (t) p j,asp1i 2i i i

1 12 2p jj � j(j � 1)j � j , j p 0,1,2 .a d e ,e1 22 2

We assume that yi conditional on is bivariates (t) p ji

normal. We note that, in many situations, appropriate
transformation is needed to achieve normality. This is
illustrated in the analysis of asthma data, in the example
given below.

For ASP data, instead of the variance components
parameters, we find that it is more convenient to use
the total variance and the correlation coefficients. Let

be the total variance. Denote the cor-2 2 2 2j p j � j � ja d e

relation coefficients by

Cov (y ,y Fs(t) p j,asp )1i 2i i
r p , j p 0,1,2 . (2)j 2j

Let . From equation (2) for rj, derivedr p (r ,r ,r )0 1 2

from the basic quantitative trait model (1), we see that
satisfies the monotonicity constraints .r r � r � r0 1 2

Furthermore, if we assume that the residual covariance
is nonnegative, then we haveje ,e1 2

0 � r � r � r . (3)0 1 2

Intuitively, the monotonicity constraints make sense, be-
cause the correlation should increase as the amount of
IBD sharing at a linked locus increases. The restriction
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that arises from the consideration that even whenr � 00

two sibs share 0 alleles IBD at locus t, they may still
share the same genes at other loci, as well as similar
environmental factors. Therefore, the residual correla-
tion should be nonnegative. When there is no linkage
( ), then .j p j p 0 r p r p ra d 0 1 2

We note that all the parameters—in particular, the
additive dominance variances and the correlation coef-
ficients —are for the ASP data. That is, they are definedr

with respect to the population of ASPs. They are, in
general, different from the corresponding parameters in
the population, as in the standard VC methods.

The second component, , isw (t) p P [mFs (t) p j]ij i i

the conditional probability of the observed marker
data, given that the ith pair shares j alleles IBD at locus
t. It is clear that wij(t) is determined by the marker data
and the location t. Let be thep (t) p P [s (t) p jFm ]ij i i

probability that the ith pair shares j alleles IBD giv-
en the marker data. By Bayes’ theorem, w (t) pij

. The probability can bep (t)P(m )/P [s (t) p j] p (t)ij i i ij

computed using the Genehunter program (Kruglyak et
al. 1996). is the Mendelian probability of theP(m )i
marker; thus, it does not involve any parameters and
can be treated as a constant. The unconditional prob-
ability , 0.5, and 0.25 for , 1,P [s (t) p j] p 0.25 j p 0i

and 2, respectively.
The third component, , is thez p P [s (t) p jFasp ]j i i

probability that an ASP shares j alleles IBD, for j p
. This is the parameter of main interest. Under the0,1,2

null hypothesis of no linkage between the dichotomous
trait and locus t, , , and .z p 0.25 z p 0.5 z p 0.250 1 2

Because , we only need to considerz � z � z p 1 z0 1 2 0

and . Let . The test of linkage between thez z p (z ,z )1 0 1

dichotomous trait and the locus t can be formulated in
terms of whether z deviates from its null value.

The CLR Test

To define the LR test statistics, we first need to con-
sider (a) the parameter spaces of z and r and (b) the
relationship between the parameters z and r.

The sharing probabilities must lie in a closed(z ,z )0 1

triangle bounded by , , andz p 0 z p 0.5 z p 2z0 1 1 0

(Holmans 1993). We denote this triangle by “D” below.
Under pleiotropy or tight coincident linkage, the param-
eters z and r, which describe linkage of the dichotomous
and quantitative traits, should be related. In particular,
pleiotropy or tight coincident linkage implies that a locus
is linked to the dichotomous trait if and only if it is also
linked to the quantitative trait. Since our main interest
is in detecting linkage of the dichotomous trait, the pa-
rameter z is of primary interest. Therefore, we use the

following model to take into account pleiotropy and
tight coincident linkage in the likelihood:

b0
r p ,0 1 � b0

[ ]b exp (0.25 � z )b0 0 1

r p ,1 [ ]1 � b exp (0.25 � z )b0 0 1

[ ]b exp (0.25 � z )b0 0 2

r p . (4)2 [ ]1 � b exp (0.25 � z )b0 0 2

These equations ensure that, if the dichotomous trait is
not linked to a locus ( ), then neither is thez p 0.250

quantitative trait.
To ensure that r0, r1, and r2 satisfy the monotonicity

constraints, we must restrict the parameter (b0, b1, b2)
in the space

B p {(b ,b ,b ):b � 0, b � b � 0} .0 1 2 0 2 1

We note that the above expressions provide one way
for incorporating pleiotropy and coincident linkage ex-
plicitly into the likelihood. There are probably other
parameterizations that can achieve the same goal. We
choose the above expressions because the constraints on
r are automatically satisfied with the restriction on b0,
b1, and b2. We write the overall likelihood L in terms
of (z,b) below.

With this parameterization, the parameter space is
. Under the null hypothesis ofH p {(z,b):z � D, b � B}

no linkage, b1 and b2 disappear from model (4). The
corresponding parameter space is H p {(z,b ):z p0 0

.(0.25,0.5),b � 0}0

In general, the hypotheses can be stated in terms of
the null parameter space versus everything outside the
null space. The proposed CLR test statistic at locus t
corresponding to the hypotheses versus isH H � H0 0

ˆˆL(z,b; t)
L(t) p 2 log , (5)ˆL(z ,b ; t)0 0

where is the maximum likelihood estimator (MLE)ˆˆ(z,b)
obtained in and where and is theˆH z p (0.25,0.5) b0 0

MLE of b0 obtained in .H0

However, by considering the whole parameter space
, the degrees of freedom are relatively high, which mayH

impede the power of the test. To reduce the degrees of
freedom, we can consider a reasonable subspace of .H

For complex disorders, the dominance variance is, in
general, small (Risch 1990). Thus, in computing the LR
test statistic, we can restrict . This is equivalentz p 0.51

to assuming that the dominance variance of the dichot-
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omous trait is 0 in the analysis. For parameters b1 and
b2, we can also put further constraints on them. For
example, a simple restriction is to set . Thisb p 2b2 1

restriction ensures that r automatically satisfies equation
(3). We note that the above restrictions do not necessarily
correspond to the true underlying model. However, the
LR test with these restrictions is valid in the sense that
the size of the test is correct. With this restriction, the
exact asymptotic null distribution is unknown. A con-
servative null distribution of the CLR statistic is

, where denotes the degen-2 2 2 20.25x � 0.5x � 0.25x x0 1 2 0

erate distribution that puts probability 1 at 0. If r and
z are independent parameters not constrained by model
(4), then the asymptotic null distribution is 20.25x �0

(Self and Liang 1987). With the con-2 20.5x � 0.25x1 2

straints defined in model (4), this distribution is sto-
chastically greater than the correct asymptotic null dis-
tribution. Our simulation studies (see the “Simulation
Results” section, below) show that this distribution is
much too conservative. On the basis of our simulation
results, a better but still conservative approximation is
to increase the value of the CLR statistic by 0.8 (on
the x2 scale) and then use the distribution 20.25x �0

to calculate the P value. We will use this2 20.5x � 0.25x1 2

approximation to calculate the P values of the CLR sta-
tistics in the analysis of an asthma data set below. A
computer program for computing the CLR statistic can
be found at J.H.’s Web site.

Simulation Results

We conduct simulation studies to evaluate the null dis-
tribution of the CLR statistic and compare its power
with the MLS test for ASP data (Risch 1990).

In the simulations, we assume that the parents and
the sibs in a family are genotyped. We also assume that
the trait locus has two alleles, D and d, with allele
frequencies p and , respectively. The markerq p 1 � p
used in the simulation has 10 alleles with equal allele
frequencies. The polymorphism information content of
the marker is 0.89. We also assume that the same locus
affects both the dichotomous and continuous traits. For
the dichotomous trait, we consider three genetic models:
recessive, dominant, and additive. For the continuous
trait, we consider the model , fory p m � g � u � ej j j

, 2, where m is the overall mean, gj is the geneticj p 1
effect, u is the common environmental effect, and ej is
the residual. The genetic effect gj takes the values a, d,
and �a for genotypes DD, Dd, and dd, respectively.
We assume that and . Let the2 2u ∼ N(0,j ) e ∼ N(0,j )u j e

broad-sense heritability be (Lynch and Walsh 1998)

Var (g )j2H p .
Var (u) � Var (g ) � Var (e )j j

However, the H2 here is not the population heritability
as it is usually understood. This H2 is specifically the
heritability among the ASPs. If we assume an additive
model ( ) on the genetic effect gj, then a is givend p 0
by

2 2 2H j � ju ea p # .� 2(1 � H ) 4pq(1 � pq)

We fix . Thus, when the trait allele fre-2 2j p j p 1u e

quency is given, a is determined by the heritability. This
fact is used in determining the generating values of a
for a given H2 and p.

Simulation under H0

A conservative estimate of the asymptotic null distri-
bution of the CLR statistic is a mixture of x2 distri-
butions: . However, the exact2 2 20.25x � 0.5x � 0.25x0 1 2

asymptotic null distribution of the CLR statistic is un-
known. Therefore, we performed simulations to deter-
mine the critical value for a given test size and to gauge
how conservative the mixture x2 distribution is. To ac-
curately determine the critical value for the power cal-
culation, we perform the simulation using the same gen-
erating models (recessive, dominant, and additive) as in
the power simulation (see below), except that the re-
combination fraction between the marker and trait loci
is set to be 0.5, and the heritability for the quantitative
trait is set to be 0. The sample size is , whichn p 100
is also the sample size in the power simulation. Under
the null hypothesis, the trait model (i.e., recessive, dom-
inant, or additive) does not affect the distribution of the
CLR statistic. Therefore we combined the results based
on 30,000 replications from the three generating models
to determine the empirical critical value for a given test
size.

To compare the critical values of the CLR statistic
and the MLS statistic on the basis of (Rischp(m d asp ,t)i i

1990) without incorporating the quantitative trait and
assuming that the dominance effect is zero, we also
computed the theoretical and empirical critical values
of the latter, which has an asymptotic null distribution

.2 20.5x � 0.5x0 1

Table 1 gives the simulated critical values for a p
, 0.01, and 0.001 and the critical values based on0.05

the asymptotic distribution. The simulated critical values
of the MLS statistic and the theoretical values are similar.
However, the simulated critical values of the CLR sta-
tistic are less then those based on the conservative as-
ymptotic null distribution. In all of our simulation re-
sults, the differences between the simulated critical
values and those based on the conservative asymptotic
null distribution are ∼1 but always 10.8. This suggests
that the distribution is too con-2 2 20.25x � 0.5x � 0.25x0 1 2



Huang and Jiang: Combined Analysis of Dichotomous and Quantitative Traits 953

Table 1

Critical Values for the MLS and CLR Tests

TEST

SIZE

(a)

CRITICAL VALUEa

MLSb CLR

Theoretical Simulated
Theoretical

(Conservative)c Simulated

.050 2.71 2.72 4.24 3.37

.010 5.41 5.50 7.30 6.28

.001 9.55 9.75 11.77 10.72

a Each simulated critical value is based on 30,000 replications.
b An additive model is assumed. The theoretical values are cal-

culated on the basis of the distribution .2 20.5x � 0.5x0 1
c Based on the distribution .2 2 20.25x � 0.5x � 0.25x0 1 2

servative. A better but still conservative approximation
is to add 0.8 to the CLR statistic (on the x2 scale) and
then use this distribution to calculate the P value, as
described above. In the power simulation below, we use
the simulated critical values for the CLR statistic and
the theoretical values for the MLS statistic.

Power Simulation

The purpose of the power simulation is to evaluate
whether incorporation of the associated quantitative
trait increases the power to detect linkage of the di-
chotomous trait under pleiotropy and tight coincident
linkage. Therefore, we compare the power of the pro-
posed CLR test and the MLS test for ASP data (which
does not include the associated quantitative trait in the
likelihood).

We consider three generating models: recessive, dom-
inant, and additive. We assume that the recombination
fraction between the marker and disease loci is 0. For
each generating model, we assume that the phenocopy
rate is 0.01 (the probability of being affected given the
genotype at the trait locus is dd). We use two genotypic
relative risks (GRRs), 4 and 8, in the simulation. The
disease allele frequency for all the models considered is
fixed at . For each genetic model, the results werep p 0.1
based on 10,000 replications. Six heritability values,
from 0 to 0.5 at increments of 0.1, are considered.

Table 2 gives the power simulation results for the test
size 0.01 for recessive, dominant, and additive models.
The results show that, for all the simulation models con-
sidered, the CLR test has higher power than the MLS
test when , except for both the dominant and2H � 10%
additive models when and . When2GRR p 8 H p 10%

, the MLS test tends to have higher power than2H p 0
the CLR test, except for the recessive model with

. This is to be expected, because if the locusGRR p 4
is not linked to the quantitative trait, then incorporation
of the quantitative trait in the analysis only introduces
random noise and does not increase the power for de-
tecting linkage to the dichotomous trait. However, we

note that, for the generating models considered, when
the heritability is small ( ), both the CLR and MLS� 10%
tests have little power to detect linkage, except when

in the additive model.GRR p 8
A clear trend in the simulation results is that the power

of the CLR test to detect linkage of the dichotomous
trait increases with the heritability of the associated
quantitative trait. In contrast, the power of the MLS test
basically remains constant for different values of the her-
itability. This is because, under pleiotropy or tight co-
incident linkage, the quantitative trait provides linkage
information, in addition to the dichotomous trait. There-
fore, incorporation of an associated quantitative trait
into the analysis of a dichotomous trait in general in-
creases the power to detect linkage under the pleiotropy
or the tight coincident linkage model.

Application to an Asthma Data Set

Asthma is a common chronic inflammatory disorder of
the airways, characterized by airway hyperresponsive-
ness, epithelial damage, and airway smooth-muscle hy-
pertrophy (Sheffer 1995). Although several environmen-
tal factors have been identified that increase the risk of
asthma, previous segregation analyses suggest that ge-
netics may also play an important role (Litwin 1978;
Dold et al. 1992).

There has been much interest in searching for genes
that predispose to asthma in recent years. Several groups
have conducted genome-scan and candidate-gene stud-
ies of asthma, as well as genome scans using quantitative
traits associated with asthma, such as total serum IgE
level (Marsh et al. 1994; Meyers et al. 1994; Daniels et
al. 1996; Collaborative Study on the Genetics of Asthma
[CSGA] 1997; Palmer et al. 1998; Wilkinson et al. 1998;
Wjst et al. 1999; Xu et al. 2001), and have identified
several regions that could be linked to asthma. All of
these studies considered either asthma status only or the
asthma-related quantitative traits in the linkage analy-
sis. When both asthma status and the asthma-related
quantitative traits are available, genome scans are per-
formed separately.

We illustrate the proposed method with the asthma
data set (Wjst et al. 1999). In this data set, there are 91
families contributing two children with asthma and 6
families contributing three children with asthma. A total
of 331 markers with an average intermarker distance
of 10.7 cM on 22 autosomal chromosomes are available
for linkage analysis. (For a detailed description of the
data, see Wjst et al. 1999.)

Because our method assumes normality of the quan-
titative trait, we first examine the distribution of the
observed total IgE levels. Figure 1a gives the histogram
of the standardized total IgE levels—that is, the total
IgE levels are centered by the sample mean and divided
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Table 2

Power Simulation Results for the Test Size for Recessive, Dominant, and Additive Modelsa p .01

POWER

Recessive Dominant Additive

GRRp4 GRRp8 GRRp4 GRRp8 GRRp4 GRRp8

(%)2H MLS CLR MLS CLR MLS CLR MLS CLR MLS CLR MLS CLR

0 .01 .02 .12 .11 .20 .18 .69 .67 .27 .24 .74 .70
10 .02 .02 .12 .16 .18 .19 .70 .69 .25 .28 .76 .75
20 .02 .05 .12 .21 .19 .26 .70 .73 .24 .31 .74 .75
30 .02 .07 .14 .38 .20 .30 .70 .75 .23 .38 .75 .82
40 .02 .10 .14 .46 .19 .41 .69 .79 .26 .49 .75 .84
50 .02 .15 .12 .53 .20 .48 .69 .84 .23 .59 .75 .91

NOTE.—The sample size is . For each generating model, the results are based on 10,000 repli-n p 100
cations. The power is calculated as the percentage of the test statistics that are greater than the critical
value. For the MLS test, the critical value ; for the CLR test, the critical value .p 5.41 p 6.28

by the sample SD. The density curve of the standard
normal distribution is also given in the plot. The dis-
tribution of the total IgE is highly skewed to the right.
For such skewed data, two commonly used transfor-
mations are the logarithm and square root. Figure 1b
and 1c display the histograms of the standardized log-
arithm and square root of the total IgE levels, respec-
tively. It can be seen that, although the distributions of
the transformed data are less skewed than the raw data,
they are still far from being normally distributed. There-
fore, we use a nonparametric normal quantile trans-
formation that guarantees that the marginal distribution
of the data is approximately normal. This transfor-
mation is defined as follows. First, denote the (modified)
empirical distribution function of the total IgE levels
(xi1,xi2) of all the sib pairs by

n 22n 1
F (x) p # 1 ,��n {x �x}ij2n � 1 2n ip1 jp1

where . Then the transformed data is defined asn p 95
, for , 2 and . Since Fn

�1y p F [F (x )] j p 1 i p 1, … ,nij n ij

converges to F, the unknown marginal distribution of
xij, this transformation always results in approximately
normally distributed observations yij, regardless of the
form of F. We call this transformation a “quantile trans-
formation.” Figure 1d shows the histogram of the trans-
formed data. We can see that the distribution of the
transformed data is approximately normal.

Thus, we apply the proposed CLR test to the German
asthma data with the quantile transformation of the
total IgE levels. In computing the likelihood defined in
equation (5), we restricted the parameter space so that

and . As a comparison, we also com-z p 0.5 b p 2b1 2 1

puted the MLS statistic for ASP data under the as-
sumption that (Risch 1990), as well as the newz p 0.51

Haseman-Elston statistic, using only the IgE level (Els-
ton et al. 2000). The LOD scores along the 22 auto-

somal chromosomes are displayed in figures 2 and 3,
in which the solid lines are the LOD scores obtained
on the basis of the proposed CLR statistic, the dotted
lines are the LOD scores based on the MLS statistic,
and the dashed lines are the LOD scores based on the
H-E statistic. Because the H-E statistic is a t statistic,
to make it comparable in scale, its corresponding (ap-
proximate) LOD score is calculated as the base-10 log-
arithm of the square of the maximum of the H-E statistic
and zero.

As we can see from the LOD score plots, the H-E
statistic that uses only IgE levels does not give any sig-
nificant linkage signal in the 22 autosomal chromo-
somes. Therefore, we consider only the results from the
CLR and MLS statistics below. The CLR and MLS sta-
tistics suggest that there are several interesting regions.
The CLR score has an overall trend similar to the MLS
score, but the CLR score is always higher. However,
since the CLR statistic and the MLS score have different
degrees of freedom, the scales of the two LOD scores
are not strictly comparable. In table 3, we list the results
of seven loci at which the maximum LOD scores based
on the CLR statistic are 11.2.

From table 3, the strongest linkage signal comes from
chromosome 6, where the CLR LOD score is 2.9, with
P value .0003, and where the MLS LOD score is 1.76,
with P value .0022. The second-highest LOD score is
on chromosome 9, where the CLR LOD score is 2.2,
with P value .0015, and where the MLS LOD score is
1.69, with P value .0027. For the remaining five loca-
tions, all the LOD scores are !2, and the CLR LOD
scores have values that are slightly higher but mostly
similar to the MLS LOD scores. However, at four lo-
cations, the MLS LOD scores have smaller P values than
the CLR LOD scores. For example, on chromosome 15,
the CLR LOD score is 1.99, with P value .0025, and
the MLS LOD score is 1.83, with P value .0019. This
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Figure 1 Histograms of total IgE level and its transformations. The Y-axis in each panel represents density. a, Standardized total IgE
levels. b, Standardized logarithm of total IgE levels. c, Standardized square root of total IgE levels. d, Transformed total IgE levels.

illustrates that a bigger CLR score may not necessarily
be more significant than a smaller MLS score.

We note that several previous studies have suggested
linkage of asthma or total IgE level to various chro-
mosomes, including the ones listed in table 3 (Marsh et
al. 1994; Meyers et al. 1994; Daniels et al. 1996; CSGA
1997; Wjst et al. 1999; Yokouchi et al. 2000).

Discussion

We proposed a likelihood-based approach for joint anal-
ysis of dichotomous and quantitative traits in sib-pair
data. We have demonstrated that, for the models con-
sidered in our simulations, under pleiotropy or tight co-
incident linkage, the power to detect linkage of the di-
chotomous trait is increased when it is analyzed jointly
with an associated quantitative trait.

The proposed CLR test is designed to deal with the
situation in which the dichotomous trait cannot be mod-
eled as the discretized version of an underlying contin-
uous factor. Indeed, such dichotomous traits are truly
discrete ones. It is perhaps more appropriate to call the
qualitative traits obtained from an underlying contin-
uous factor discretized traits. As has been pointed out
before, when a continuous phenotype itself is available,
there is no need to discretize it. Indeed, doing so will

reduce the power to detect linkage (Williams et al.
1999a).

As we mentioned earlier, many complex disorders—in
particular, psychiatric disorders such as autism—are di-
chotomous traits, and there is no single underlying con-
tinuous risk factor. It has been well established that
genetics play an important role in these disorders. How-
ever, it has proved difficult to localize the genes that
predispose to these disorders by standard linkage meth-
ods. An emerging strategy is to include the information
on the associated quantitative trait in the analysis,
which may help with detection of the genes that affect
these disorders (Almasy and Blangero 2001; Piven
2001). The proposed approach provides an efficient
method for analytically implementing such a strategy.

In formulating the likelihood for the dichotomous
and quantitative traits, we made the assumption of ei-
ther pleiotropy or tight coincident linkage. These as-
sumptions are necessary; if the dichotomous and quan-
titative traits are linked to loci that are far apart or
unlinked, then combined analysis may not have higher
power than the univariate analysis. This is because com-
bined analysis increases the degrees of freedom, so, for
a given size of the test, a larger critical value is required.
This increase in degrees of freedom may not be com-
pensated for by the modest increase in information in
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Figure 2 LOD scores on chromosomes 1–12. Solid line p CLR; dotted line p MLS; dashed line p H-E
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Figure 3 LOD scores on chromosomes 13–22. Solid line p CLR; dotted line p MLS; dashed line p H-E
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Table 3

Linkage Analysis Results for the German Asthma Data Set

CHROMOSOME

MLS CLR

Locationa

(cM) LOD
Approximate

P Value
Locationa

(cM) LOD
Approximate

P Value

2 72 1.95 .0014 72 1.96 .0027
4 197 .95 .0183 197 1.33 .0120
5 59 1.39 .0057 59 1.42 .0098
6 32 1.76 .0022 34 2.90 .0003
9 97 1.69 .0027 98 2.20 .0015
12 96 1.27 .0078 96 1.27 .0140
15 82 1.83 .0019 83 1.99 .0025

a Distance from the left end of the chromosome.

the joint analysis if the loci responsible for dichotomous
and quantitative traits are far apart.

To incorporate pleiotropy and tight coincident link-
age into the proposed likelihood, we used the expres-
sions given in model (4). These expressions relate the
variance-components parameters that describe linkage
of the quantitative trait and the IBD-sharing parameters
that describe linkage of the dichotomous trait. In ad-
dition to incorporation of pleiotropy and tight coinci-
dent linkage into the analysis, we also use these ex-
pressions for the following purposes. The first purpose
is to make it explicit in the analysis that the primary
purpose of the linkage analysis is to detect the genes
that predispose the dichotomous trait. This is achieved
by defining the IBD-sharing parameters as the indepen-
dent parameters, while the correlation parameters (for
the quantitative trait) depend on the IBD-sharing pa-
rameters. We note that, if the primary interest is in map-
ping the loci affecting the quantitative trait, then we can
reverse the roles of the IBD-sharing and VC parameters,
so that the former become the dependent parameters
and the latter the independent parameters, although dif-
ferent expressions than those given in model (4) should
be considered. The second purpose is to reduce the de-
grees of freedom. This is achieved because the parameter
space under the constraints of model (4) is smaller and
the correlation parameters disappear under the null hy-
pothesis. Although the asymptotic null distribution of
the CLR statistic is complicated and unknown under
the constraints of model (4), a simple mixture of x2

distributions can be used to give an upper bound of the
P value, as illustrated in the analysis of the asthma data
example.

We note that the problem of joint analysis of di-
chotomous and quantitative traits considered in this
study is different from that of incorporating covariates
in ASP data (Greenwood and Bull 1999; Olson 1999;
Gauderman and Siegmund 2001; Goddard et al. 2001;
Devlin et al. 2002). Specifically, here we are interested
in an associated trait that is in pleiotropy or tight co-

incident linkage with the dichotomous trait of interest,
and it is modeled as such in the likelihood analysis.
However, in modeling covariates in ASP data, no such
modeling consideration is required in the analysis. For
example, the usual variables, such as sex and ethnicity,
can be considered as covariates but are not appropriate
to be modeled as associated traits that are in pleiotropy
or tight coincident linkage with the trait of interest.
Thus, it is important to distinguish these two types of
variables. We can also consider the usual covariates in
the proposed joint analysis of dichotomous and quan-
titative traits. For example, we can let the IBD-sharing
parameters depend on the covariates to model locus
heterogeneity or gene-environment interaction. We can
also use a regression model to remove the covariate
effects on the quantitative trait, as in standard VC meth-
ods (Amos 1994).

In this study, we considered only ASP data with an
associated quantitative trait. We are considering ex-
tending the present approach to general pedigrees that
include both affected and unaffected individuals. It is
also of interest to consider incorporation of the asso-
ciated multivariate quantitative traits into the analysis
of a dichotomous trait, based on the genetic covariance
structure for multivariate traits (Lange and Boehnke
1983; Lange 1997). We hope to communicate the results
of these extensions in future articles.
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